Saturday, 27 August 2011

Series and parallel inductors


When inductors are connected in series, the total inductance is the sum of the individual inductors' inductances. To understand why this is so, consider the following: the definitive measure of inductance is the amount of voltage dropped across an inductor for a given rate of current change through it. If inductors are connected together in series (thus sharing the same current, and seeing the same rate of change in current), then the total voltage dropped as the result of a change in current will be additive with each inductor, creating a greater total voltage than either of the individual inductors alone. Greater voltage for the same rate of change in current means greater inductance.
Thus, the total inductance for series inductors is more than any one of the individual inductors' inductances. The formula for calculating the series total inductance is the same form as for calculating series resistances:
When inductors are connected in parallel, the total inductance is less than any one of the parallel inductors' inductances. Again, remember that the definitive measure of inductance is the amount of voltage dropped across an inductor for a given rate of current change through it. Since the current through each parallel inductor will be a fraction of the total current, and the voltage across each parallel inductor will be equal, a change in total current will result in less voltage dropped across the parallel array than for any one of the inductors considered separately. In other words, there will be less voltage dropped across parallel inductors for a given rate of change in current than for any of those inductors considered separately, because total current divides among parallel branches. Less voltage for the same rate of change in current means less inductance.
Thus, the total inductance is less than any one of the individual inductors' inductances. The formula for calculating the parallel total inductance is the same form as for calculating parallel resistances:

INDUCTOR


An inductor is a passive electronic component that storesenergy in the form of a magnetic field. In its simplest form, an inductor consistsof a wire loop or coil. The inductance is directly proportional to the number ofturns in the coil. Inductance also depends on the radius of the coil and on the type of material around which the coil is wound.
For a given coil radius and number of turns, air coresresult in the least inductance. Materials such as wood, glass, and plastic - known as dielectric materials - are essentially the same as air for the purposes of inductor winding. Ferromagnetic substances such as iron, laminated iron, and powdered iron increase the inductance obtainable with a coil having a given number of turns. In some cases, this increase is on the order of thousands of times. The shape of

LEARN MORE
CIO Midmarket Resources
the core is also significant. Toroidal (donut-shaped) cores provide more inductance, for a given core material andnumber of turns, than solenoidal (rod-shaped) cores.

The standard unit of inductance is the henry, abbreviatedH. This is a large unit. More common units are the microhenry, abbreviated µH (1 µH =10-6H) and the millihenry, abbreviated mH (1 mH =10-3 H). Occasionally, the nanohenry (nH) is used (1 nH = 10-9 H).

It is difficult to fabricate inductors onto integratedcircuit (IC) chips. Fortunately, resistors can be substituted for inductors in most microcircuit applications. In some cases, inductance can be simulated by simple electronic circuits using transistors, resistors, and capacitors fabricated onto ICchips.

Inductors are used with capacitors in various wirelesscommunications applications. An inductor connected in series or parallel with a capacitor can provide discrimination against unwanted signals. Large inductors are used in the power supplies of electronic equipment of all types, including computers and their peripherals. In these systems, the inductors help to smooth out the rectified utility AC, providing pure, battery-like DC.

Friday, 26 August 2011

Definition of electronics

 Electronics is the branch of science that deals with the study of flow and control of electrons (electricity) and the study of their behavior and effects in vacuums, gases, and semiconductors, and with devices using such electrons. This control of electrons is accomplished by devices that resist, carry, select, steer, switch, store, manipulate, and exploit the electron.